Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(3): e17221, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450880

RESUMO

Communities interspersed throughout the Canadian wildland are threatened by fires that have become bigger and more frequent in some parts of the country in recent decades. Identifying the fireshed (source area) and pathways from which wildland fire may ignite and spread from the landscape to a community is crucial for risk-reduction strategy and planning. We used outputs from a fire simulation model, including fire polygons and rate of spread, to map firesheds, fire pathways and corridors and spread distances for 1980 communities in the forested areas of Canada. We found fireshed sizes are larger in the north, where the mean distances between ecumene and fireshed perimeters were greater than 10 km. The Rayleigh Z test indicated that simulated fires around a large proportion of communities show significant directional trends, and these trends are stronger in the Boreal Plains and Shields than in the Rocky Mountain area. The average distance from which fire, when spreading at the maximum simulated rate, could reach the community perimeter was approximately 5, 12 and 18 km in 1, 2 and 3 days, respectively. The average daily spread distances increased latitudinally, from south to north. Spread distances were the shortest in the Pacific Maritime, Atlantic Maritime and Boreal Plains Ecozones, implying lower rates of spread compared to the rest of the country. The fire corridors generated from random ignitions and from ignitions predicted from local fire history differ, indicating that factors other than fuel (e.g. fire weather, ignition pattern) play a significant role in determining the direction that fires burn into a community.


Assuntos
Desastres , Incêndios Florestais , Canadá , Simulação por Computador , Florestas
2.
Phys Rev E ; 107(2-1): 024131, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932568

RESUMO

This paper analyzes the impact of collisions in a system of N identical hard-core particles driven according to a velocity jump process. The physical space is essentially a channel in R with a probability of occupants being able to pass each other. The system mimics what nature does, where individuals pass one another in a narrow channel while making incidental contact with those moving in the opposite direction. The passing probability may depend on the particles' size and the channel's width. Starting from the particle level model, we systematically derive a nonlinear transport equation based on an asymptotic expansion. Under low-occupied fractions, numerical solutions of both the kinetic model and the stochastic particle system are compared well during biased and unbiased random velocity changes. Analysis of the subpopulation motility within a large population exhibits the consequences of volume exclusions and channel confinements on the traveling speeds.

3.
Phys Rev E ; 101(2-1): 022419, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168583

RESUMO

In this paper we consider a biased velocity jump process with excluded-volume interactions for chemotaxis, where we account for the size of each particle. Starting with a system of N individual hard rod particles in one dimension, we derive a nonlinear kinetic model using two different approaches. The first approach is a systematic derivation for small occupied fraction of particles based on the method of matched asymptotic expansions. The second approach, based on a compression method that exploits the single-file motion of hard core particles, does not have the limitation of a small occupied fraction but requires constant tumbling rates. We validate our nonlinear model with numerical simulations, comparing its solutions with the corresponding noninteracting linear model as well as stochastic simulations of the underlying particle system.

4.
Rapid Commun Mass Spectrom ; 19(11): 1429-36, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15880637

RESUMO

Sulfur (S) isotope ratios of thoroughly dried organic samples were measured by direct thermal decomposition in an elemental analyzer coupled to an isotope ratio mass spectrometer in continuous flow mode (EA-CF-IRMS). For organic samples of up to 13 mg weight and with total S contents of more than 10 microg, the reproducibility of the delta34S(organic) values was +/-0.4 per thousand or better. However, the delta34S values of organic samples measured directly by online EA-CF-IRMS analysis were between 0.3 and 2.9 per thousand higher than those determined on BaSO4 precipitates produced by Parr Bomb oxidation from the same sample material. Our results suggest that structural oxygen in organic samples influences the oxygen isotope ratios of the SO2 produced from organic samples. Consequently, SO2 generated from organic samples appears to have different 18O/16O ratios than SO2 generated from BaSO4 precipitates and inorganic reference materials, resulting in a deviation from the true delta34S values because of 32S16O18O contributions to mass 66. It was shown that both the amount of structural oxygen in the organic sample, and the difference of the oxygen isotope ratios between organic samples and tank O2, influenced the magnitude of the observed deviation from the true delta34S value after direct EA-CF-IRMS analysis of organic samples. Suggestions are made to correct the difference between measured delta34S(organic) and true delta34S values in order to obtain not only reproducible, but also accurate S isotope ratios for organic materials by EA-CF-IRMS.


Assuntos
Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Compostos Orgânicos/química , Pinus/química , Casca de Planta/química , Isótopos de Enxofre
5.
J Chem Phys ; 120(17): 7887-93, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15267703

RESUMO

The observation that a molecular electron density is close to the superposition of its constituent atoms leads naturally to the idea of modeling a density by a sum of nuclear-centered, spherically symmetric functions. The functions that are optimal in a least-squares sense are known as Stewart atoms. Previous attempts to construct Stewart atoms by expanding them in an auxiliary basis have been thwarted by slow convergence with respect to the size of the auxiliary basis used. We present a method for constructing Stewart atoms via convolution integrals which bypasses the need for an auxiliary basis, and is able to produce highly accurate approximations to Stewart atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...